Профессия
Data Scientist

ПЕРВЫЙ ПЛАТЕЖ НА 2-ОЙ МЕСЯЦ
-45% 0 дня 00:00:00
Получить профессию
  • Вернем деньги

    если не трудоустроишься

  • ★ 4,6 из 5

    рейтинг курса на основе 14 267 оценок

  • Авторы курса

    эксперты из Сбера, Visa, Wildberries, ВТБ и EPAM

  • -45%

    Скидка  действует
    0 дня 00:00:00

Data scientist помогает компаниям зарабатывать больше

Поэтому такой специалист востребован во многих сферах. Например, с помощью нейросетей и анализа данных он может оценивать кредитоспособность клиентов в банках, создавать рекомендательные сервисы в онлайн-кинотеатрах или искать месторождения полезных ископаемых в нефтяных корпорациях.

Кратко про обучение

  • Постепенно погрузитесь в профессию

    Изучите основы математики и статистики, а затем на продвинутом уровне изучите машинное обучение или анализ данных на выбор.

  • Сможете работать во время обучения

    Уже в середине курса ваших знаний и навыков будет достаточно, чтобы выйти на стажировку.

  • Будете учиться на реальных задачах от компаний

    Поработаете с данными «СберАвтоподписки» и «СберМаркета».

Быть специалистом по Data Science — круто

  • Самая высокооплачиваемая профессия среди всех аналитиков

    7 000 BYN в месяц — средняя зарплата специалиста по Data Science

  • Универсальный специалист с широким набором профессиональных знаний

    Data scientist — аналитик и программист в одном лице, он способен создать ИИ и прогнозировать будущее на основе данных

  • Даже без опыта легко найти работу

    Data scientist поможет любой компании, где нужно получить пользу от данных

Сравниваете разные курсы по Data Science?

Оставьте заявку на бесплатную консультацию, и мы расскажем, чем программа обучения в Skillbox отличается от остальных.

Мы научим вас каждому этапу работы с данными

  • Собирать и обрабатывать данные

    Научим выгружать данные из разных источников и очищать их от лишней информации.

  • Анализировать и оценивать данные

    Подробно и на понятных примерах объясним основы статистики, чтобы вы смогли быстро выявлять паттерны, тенденции и корреляции в данных.

  • Программировать и прогнозировать

    С нуля научим программировать модели машинного обучения на Python. С помощью таких моделей вы сможете предсказывать данные. Например, погоду или будущую прибыль компании.

  • Визуализировать и презентовать данные

    Вы узнаете, как создавать графики, диаграммы и дашборды, чтобы сделать данные понятными для других людей. А ещё мы научим вас презентовать результаты анализа заказчику.

Ваше резюме по итогам обучения

Должность

Data scientist

Навыки

  • Извлекаю данные из различных источников: файлы, API, базы данных
  • Очищаю данные
  • Работаю с Big Data
  • Провожу разведывательный анализ данных
  • Визуализирую результаты анализа в виде дашбордов
  • Формулирую и проверяю гипотезы
  • ML-инженер: строю модели машинного обучения с учителем и без
  • ML-инженер: внедряю модели и оцениваю их качество

Инструменты

Каждый может освоить Data Science

  • Во время обучения в вузе Анастасия Коротаева наткнулась на статью про Data Science. Девушку заинтересовала новая сфера, она взяла курс по Data Science в Skillbox, стала участницей кейс-чемпионатов, начала программировать на Python и определилась с профессией после бакалавриата.

    Студентка Специалист по Data Science
    История Анастасии
  • Владислав с нуля выучился на аналитика данных. Работал в «Сбере», а сейчас — занимается аналитикой инцидентов в «Иннотехе».

    Геолог Аналитик данных
    История Владислава
  • Ольга перешла на позицию дата-сайентиста в немецкой компании и доросла до senior-уровня. Успешно совмещает работу в IT с воспитанием четверых детей.

    Специалист техподдержки, программист Дата-сайентист
    История Ольги
  • Влада в декрете с нуля освоила дата-аналитику, успешно прошла стажировку и теперь работает маркетологом-аналитиком в крупной компании.

    Менеджер по ВЭД Маркетолог-аналитик
    История Влады
  • Иван выиграл в учебном интенсиве, сдав 33 практических работы за месяц, и устроился дата-аналитиком в зарубежную компанию.

    Менеджер по продажам Дата-аналитик
    История Ивана
  • Алексей Гайдабура работал руководителем в порту, но его всегда тянуло к техническим нюансам работы. Он планировал расписание с помощью анализа статистических данных, проектировал статистические модели. Увлечение привело Алексея на курс Skillbox. Он подробнее погрузился в анализ данных, оптимизировал рабочие процессы и поборол бюрократию у себя в компании.

    Руководитель Специалист по Data Science
  • Жираслан учился на инженера-программиста и параллельно осваивал новую профессию дата-сайентиста в Skillbox. После курса Жираслан проходил стажировку в «ВТБ Капитал» и устроился в «Т-Банк» (быв. «Тинькофф») аналитиком в отдел контроля качества.

    Студент Аналитик данных в «Т-Банк» (быв. «Тинькофф»)
    История Жираслана
  • Ксения не нашла себя в продажах и решила сменить профессию: окончила курс по анализу данных в Skillbox, переехала в Грецию и стала аналитиком данных в крупном российском банке.

    Менеджер продаж Аналитик данных
    История Ксении
  • Слабый слух не помешал Яне Чусовитиной освоить анализ данных в Skillbox. Девушка участвовала в проекте «Будущее без ограничений», где студенты с инвалидностью учатся в Skillbox бесплатно в течение года. Сейчас Яна работает аналитиком данных в Лукойле, а ещё — разрабатывает идею своего курса по программированию для слабослышащих людей.

    Студентка Аналитик данных в Лукойле
    История Яны
  • Бармен Виктор Толстиков решил заняться Data Science чисто случайно — просто искал новое хобби. Во время пандемии рестораны испытывали не лучшие времена, поэтому Виктор превратил увлечение в основную профессию. Он прошёл курс в Skillbox, устроился аналитиком в геймдев-компании и даже успел получить повышение.

    Бармен Аналитик данных
    История Виктора
  • Андрей 15 лет работал администратором баз данных, а потом понял, что упёрся в потолок. Освоил Data Science в Skillbox и разработал собственную систему искусственного интеллекта для банков.

    Администратор баз данных Специалист по Data Science
  • Студенту Артёму Лёвкину с детства нравилось работать с цифрами, поэтому в 22 года он решил освоить Data Science в Skillbox. После обучения Артём устроился дата-сайентистом в аудиторскую компанию Deloitte, где помогает обрабатывать данные.

    Студент Специалист по Data Science
  • Владимир работал на фрилансе, когда однажды загорелся идеей заняться прогнозированием и аналитикой данных. Прошёл курс Skillbox, освоил новый язык программирования, увеличил доход и создал собственную нейронную сеть.

    Фрилансер Специалист по Data Science
    История Владимира
  • Дарья Бокарева узнала о Data Science на студенческом хакатоне. Зацепила смесь IT и аналитики, а ещё понравилось, что в сфере нужно постоянно учиться. Дарья прошла курс и устроилась в стартап, в котором создаёт умных чат-ботов для бизнеса.

    Студентка Специалист по Data Science

Преподаватели из топовых компаний доступно объяснят каждую тему

Программа обучения

  • 12 месяцев обучения
  • 8 реальных проектов в профессии
  • Доступ навсегда
  • Обновлена в 2024 году
  1. Первый уровень: базовая подготовка
    1. Введение в Data Science Познакомитесь с основными направлениями data science, узнаете, какие задачи решают дата-аналитики, дата-инженеры и специалисты по машинному обучению.
      • Введение в курс
      • Business understanding. С чего начинается работа с данными
      • Data understanding. Excel
      • Введение в Python
      • Переменные и типы данных
      • Условия
      • Циклы
      • Алгоритмы и структуры данных
      • Функции
      • Коллекции в Python
      • Чтение файлов в Python и командной строке
      • Библиотека Pandas
      • Получение данных с помощью API
      • Базы данных
      • Язык запросов SQL
      • Power BI
      • Data preparation
      • Разведочный анализ данных: data cleaning
      • Разведочный анализ данных: data visualization
      • Разведочный анализ данных. Feature engineering
      • Modeling
      • Машинное обучение
      • Линейные модели и нейронные сети
      • Метрики в аналитике
      • Маркетинговая аналитика
      • Продуктовая аналитика
      • Modeling. Заключение
      • Evaluation
      • Deployment
      • Модель как API
      • Мониторинг моделей
      • Airflow
      • Заключение
    2. Основы математики для Data Science Получите базовые знания по математике для работы с машинным обучением.
      • Аналитика и ML. Базовые математические объекты и SymPy. Дроби и преобразования
      • Аналитика и ML. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты
      • Аналитика и ML. Функции одной переменной, их свойства и графики
      • ML. Интерполяция и полиномы
      • ML. Аппроксимация и преобразования функций
      • ML. Аппроксимация и производные
      • ML. Функции нескольких переменных, их свойства и графики
      • ML. Частные производные функции нескольких переменных
      • ML. Вектора и матрицы. Градиент
      • ML. Линейная регрессия и системы линейных уравнений
      • Задача аппроксимации как матричное уравнение
    3. Основы статистики и теории вероятностей Поймёте принципы работы со случайными величинами и событиями.
      • Введение в теорию вероятностей
      • Случайные события
      • Случайная величина
      • Непрерывные распределения. Общие сведения
      • Основные виды непрерывных распределений
      • Статистические тесты
  2. Погружение в специализацию machine learning
    1. Machine learning. Junior Познакомитесь с алгоритмами машинного обучения для решения задач регрессии, классификации и кластеризации.
      • Постановка задачи машинного обучения
      • Основные термины машинного обучения
      • Выгрузка данных с помощью SQL
      • Линейная регрессия
      • Регуляризация линейной регрессии
      • Метрическая классификация. Метод ближайших соседей и его развитие
      • Библиотека numpy
      • Линейная классификация. Логистическая регрессия
      • Линейная классификация. Метод опорных векторов
      • Логическая классификация. Деревья решений
      • Деревья решений и случайный лес
      • Очистка данных
      • Кластеризация. Метод k-средних
      • Интерпретация. Метод k-средних
      • Кластеризация. DBSCAN
      • Несбалансированные выборки
      • Нейрон и нейронная сеть
      • Основы анализа текстов
    2. Итоговый проект Модель кредитного риск-менеджмента для банка.
      • Проанализируете объёмный датасет и создадите модель кредитного риск-менеджмента
      • Поможете банку спрогнозировать платёжеспособность клиента
    3. Трудоустройство с помощью Центра карьеры
      • Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью
      • Напишете сопроводительное письмо и грамотно оформите резюме
      • Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем
      • На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач
  3. Погружение в специализацию data analyst
    1. Data analyst. Junior Познакомитесь с базовыми методами анализа на примере анализа данных продаж. Пройдёте основы маркетинговой, BI и продуктовой аналитики.
      • Введение
      • Доступные источники данных
      • Аналитика на метриках
      • Подходы к оценке качества данных
      • Введение в формулирование гипотез
      • Визуализация в Excel
      • Проанализируете текущие продажи компании, выявите лидеров и аутсайдеров, визуализируете данные
      • Объединение разнородных данных
      • Требования к качеству данных
      • Корреляция и факторы
      • Визуализация в Python
      • Формулирование гипотез по данным
      • Выявите проблемные этапы воронки продаж, определите их причины, дадите рекомендации по изменению подходов к продажам
      • SQL как инструмент формирования витрины данных
      • Очистка данных
      • Методы прогнозирования
      • Программные средства визуализации
      • А/В-тесты и их планирование
      • Проанализируете изменения в мобильном приложении маркетплейса при помощи А/Б тестов по результатам внедрения ML-модели для оптимизации доставки
      • Данные по API и аккумулирование источников
      • Повышение качества данных
      • Выявление закономерности в данных
      • Интерпретация результатов А/В-тестирования
      • Аналитическая отчётность и сторителлинг
      • Выявите основные факторы убыточности и научитесь её прогнозировать, протестируете гипотезы о снижении убыточности
    2. Итоговый проект Анализ эффективности маркетинговых кампаний.
      • С помощью данных о покупках клиентов и их социально-демографических признаках проанализировать эффективность уже проведённых ранее маркетинговых кампаний и выявить факторы, способные повысить продажи.
    3. Трудоустройство с помощью Центра карьеры
      • Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью.
      • Напишете сопроводительное письмо и грамотно оформите резюме.
      • Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем.
      • На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач.
  4. Экспертный уровень: machine learning
    1. Machine learning. Advanced Освоите алгоритмы для построения рекомендательных систем и прогнозирования временных рядов.
      • Введение
      • Auto ML. Часть 1
      • Auto ML. Часть 2
      • Введение в computer vision
      • Нейронные сети и computer vision
      • Нейронные сети и NLP. Часть 1
      • Нейронные сети и NLP. Часть 2
      • Введение в рекомендательные системы
      • Коллаборативная фильтрация
      • Бизнес-оценка рекомендательных систем
      • Продвинутые инструменты ML-инженера
      • Временные ряды
      • Прогнозирование временных рядов с помощью других методов
      • Мониторинг качества. Бонус-модуль
    2. Deep learning (углубление в области NLP и CV) Научитесь работать с нейросетями: подробно узнаете, как они устроены, как использовать предобученные модели, готовить и передавать данные в нейросеть, строить и тестировать архитектуры, настраивать параметры и обучать модели на GPU.
    3. Итоговый проект Поработаете с алгоритмами компьютерного зрения (CV) и обработки естественного языка (NLP).
  5. Экспертный уровень: data analyst
    1. Продуктовая аналитика Будете обрабатывать данные, исследовать взаимодействие пользователей с продуктом, интерпретировать собранную информацию. Полученные результаты помогут решить задачи бизнеса.
      • Введение
      • Метрики
      • Исследования
      • А/В-тестирование
      • Юнит-экономика
      • Отчётность
    2. Маркетинговая аналитика Узнаете, как настраивать веб- и сквозную аналитику, создавать воронки продаж, анализировать поведение пользователей на сайте.
      • Введение в метрики и каналы продвижения
      • Введение в маркетинговую аналитику
      • Введение в конкурентный анализ
      • Исследование целевой аудитории
      • Анализ данных в «Яндекс Метрике»
      • Анализ данных в GA4. MyTracker
      • MyTracker
      • Основные источники данных о продажах и клиентах
      • Сквозная аналитика
      • Основные системы визуализации
      • Запуск кампании, анализ результатов и формирование новых гипотез
    3. BI-аналитика Освоите мощную платформу для анализа и визуализации данных, с помощью которой сможете преобразовывать цифры в понятные бизнесу отчёты.
      • Обзор Power BI
      • Power Query: вводная часть
      • DAX: вводная часть
      • Визуализация: вводная часть
      • Визуализация: фильтры, гистограммы и графики
      • Визуализация: карты, таблицы и матрицы
      • Визуализация: как сделать отчёт интерактивным
      • Визуализация: прочие визуальные элементы
  6. Дополнительные курсы
    1. Основы статистики и теории вероятностей advanced Научитесь применять основные принципы статистики и теории вероятностей при работе с задачами data science. Поймёте, как устроены алгоритмы машинного обучения, как в них применяются математическая статистика и теория вероятностей.
      • Gentle introduction. Теория вероятностей в Python
      • Оценивание
      • Проверка гипотез: теория
      • Проверка гипотез: практика
      • Совместные распределения
      • Исследование зависимостей
      • Временные ряды
      • Дополнительные главы (частотный и байесовский подходы, энтропия и дивергенция, формула Байеса)
    2. Карьера разработчика: трудоустройство и развитие Узнаете, как выбрать подходящую вакансию, подготовиться к собеседованию и вести переговоры с работодателем. Сможете быстрее получить должность, которая соответствует вашим ожиданиям и умениям.
      • Подготовка к поиску работы
      • Составление резюме
      • Поиск работы
      • Выполнение тестовых заданий
      • Подготовка к собеседованию и его прохождение
      • Принятие офера и выход на работу
      • Профессиональное развитие и карьерный рост
      • Типичные вопросы на собеседованиях
      • Требования к программистам разных направлений

Заработок будет расти вместе с опытом

по данным rabota.by
  • 2 800 BYN
    Junior После курса
  • 6 300 BYN
    Middle 1-5 лет
  • 10 500 BYN
    Senior 5+ лет

Вернем деньги, если не трудоустроишься

Приобретая наше обучение — вы автоматически получаете гарантированную
карьерную поддержку и трудоустройство.
* программа возврата средств распространяется не на все курсы.
Наш специалист подробно проконсультирует вас по этому вопросу. Условия акции

  1. разработаем персональный карьерный план
  2. поможем прокачать дополнительно необходимые скиллы
  3. обеспечим приоритет перед другими соискателями: у нас есть эксклюзивные предложения от компаний и закрытый канал с вакансиями

Кем вы ещё сможете работать после обучения

  • Инженером машинного обучения

    Будете разрабатывать и оптимизировать модели, которые позволяют компьютерам обучаться на данных и делать прогнозы.

  • Аналитиком данных

    Будете собирать, обрабатывать и анализировать данные, чтобы выявить тенденции и паттерны, которые помогут принимать обоснованные решения компаниям из разных сфер.

  • Специалистом CV

    Будете помогать бизнесу принимать верные решения на основе данных. Будете работать с алгоритмами, которые позволяют контролировать безопасность
на производстве, усталость водителей и повреждения трубопроводов на нефтезаводах.

  • BI-аналитиком

    Будете анализировать, визуализировать данные и создавать интерактивные дашборды в BI-инструментах, таких как Microsoft Power BI, Tableau, QlikView, IBM Cognos, Google Data Studio.

  • Продуктовым аналитиком

    Будете анализировать метрики продукта и поведение пользователей, проводить A/B-тестирование и выявлять потребности в новых функциях
в продукте.

  • Маркетинговым аналитиком

    Будете анализировать эффективность рекламных кампаний, сегментировать аудитории на основе данных и прогнозировать спрос на товары
и услуги.

Собственная образовательная платформа

Как проходит обучение

  • Сначала смотрите видеоуроки

    Они доступны в любое время. К каждому уроку мы приложили полезные материалы.

  • Потом выполняете задание или проекты

    Каждое задание основано на реальных данных. Во время выполнения проектов вы закрепите все знания, которые вы получили в видеоуроках.

  • Получаете обратную связь от кураторов

    Они проверят ваши задания в течение 72 часов с момента отправки работы, укажут на ошибки или похвалят, что вы все сделали круто.

Общение, комьюнити и нетворкинг

Вы сможете общаться в Telegram-чате с другими пользователями и экспертами.

Вернем деньги, если не трудоустроишься

  • 106 000+

    выпускников нашли работу после обучения

  • 2 200+ партнеров

    предоставляют эксклюзивные предложения и вакансии для наших студентов

  • Более 20%

    студентов берут заказы на фрилансе уже во время обучения

  • Старт курса: 29 марта
  • Осталось: 9 мест

Стоимость курса

Скидка действует 0 дня 00:00:00

  • 310 BYN/мес
  • -45%
170 BYN/мес
  • В рассрочку на 28 месяцев
  • Первый платёж через 1 месяц
  • Любой дополнительный курс в подарок
  • Год английского языка бесплатно
  • Вернем деньги если не трудоустроишься

Записаться на консультацию или оплатить на сайте

Похоже, произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.
Спасибо!

Ваша заявка успешно отправлена

Получите любой курс в подарок

  • SQL для анализа данных

    Оставь заявку на основной курс и будь на шаг впереди к профессии мечты!

  • Курс Python

    Любой дополнительный курс на твой выбор для самостоятельного обучения

  • Старт в DevOps: системное администрирование для начинающих

    Можно вернуть до 13% от стоимости курса, мы поможем оформить документы

Часто задаваемые вопросы

  • Что такое Data Science?

    Data Science — это наука, которая использует статистику, аналитику и машинное обучение для извлечения знаний из данных.

  • Кто такой Data scientist?

    Специалист по Data Science или Data scientist изучает данные, находит в них полезные закономерности и на основе этого помогает бизнесу принимать верные решения. А ещё он работает с машинным обучением — создаёт программы, которые могут сами учиться на данных и делать предсказания.

  • Чем занимается специалист по Data scientist?

    •‎ Анализирует данные. Например, исследует поведение пользователей в приложении для улучшения интерфейса.

    •‎ Создаёт статистические модели, которые могут предсказывать будущее. Например, сколько клиентов отпишутся от сервиса для чтения книг в ближайший год, если бизнес повысит цену на подписку.

    •‎ Обучает компьютеры анализировать данные. Например, создаёт модели машинного обучения для распознавания изображений в системах безопасности.

    •‎ Визуализирует данные. Разрабатывает интерактивные графики для представления результатов исследования бизнесу, чтобы руководители могли легко воспринимать информацию.

  • Сколько времени учиться на специалиста по Data Science?

    Зависит от того, где вы учитесь. Наш курс построен таким образом, что уже через полгода обучения у вас будут все необходимые навыки для первой стажировки.

  • Чему я научусь на курсе?

    Вы научитесь всему необходимому, что нужно для работы дата-сайентистом:
    •‎ Работать с SQL.
    •‎ Использовать Python и библиотеки.
    •‎ Проверять данные и определять проблемы.
    •‎ Создавать модели машинного обучения.
    •‎ Применять математику для анализа данных.
    •‎ Возглавлять DS-проекты.

  • Кому подойдёт курс Data scientist от Skillbox?

    •‎ Новичкам. У вас всё получится, даже если вы не связаны со сферой IT. Во время обучения вас будет сопровождать куратор, который поможет разобраться со всеми трудностями и доведёт до результата.

    •‎ Дата-сайентистам. Курс поможет вам повысить свою квалификацию и актуализировать знания.

    •‎ Специалистам из смежных сфер. Курс поможет вам быстро перестроиться на новую профессию и получить новую высокооплачиваемую работу.

  • Зачем платить за обучение, если в интернете много бесплатных курсов по Data Science?

    Бесплатные курсы и видео можно смотреть, чтобы стартовать в профессии и понять, нравится ли она вам. Чтобы освоить профессию на уровне, который позволит вам найти работу, мы советуем учиться на полноценных курсах, и вот почему:

    •‎ Всегда актуальная программа. Технологии в Data Science меняются быстро, поэтому мы регулярно обновляем уроки. Многие бесплатные видео в интернете были записаны давно, и информация в них может быть устаревшей.

    •‎ Практика с проверкой экспертов. Наш курс по Data Science на 80% состоит из практики, а каждое домашнее задание подробно проверяет наставник.

    •‎ Постоянная поддержка. Если что-то непонятно в бесплатном видео на YouTube, приходится гуглить и ещё больше путаться. В Skillbox вам всегда поможет наставник — он дополнительно объяснит сложные темы столько раз, сколько вам нужно.

    •‎ Помощь в трудоустройстве. Бесплатные курсы и видео, может, и дадут вам навыки, но не научат писать резюме, сопроводительные письма и проходить собеседования. В Skillbox у вас будет карьерный консультант, который поможет вам на каждом этапе поиска работы.

    •‎ Официальный документ в конце обучения. Вы получите сертификат, который подтвердит ваши знания.

  • Действуют ли какие-нибудь программы рассрочки?

    Да, вы можете купить курс в рассрочку — и спланировать свой бюджет, разбив всю сумму на небольшие ежемесячные платежи.

  • Чем рассрочка отличается от кредита?

    Вы оплачиваете только стоимость курса — проценты мы берём на себя. Для оформления рассрочки не требуются официальное трудоустройство и хорошая кредитная история.